If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=61/4
We move all terms to the left:
X^2+X^2-(61/4)=0
We add all the numbers together, and all the variables
X^2+X^2-(+61/4)=0
We add all the numbers together, and all the variables
2X^2-(+61/4)=0
We get rid of parentheses
2X^2-61/4=0
We multiply all the terms by the denominator
2X^2*4-61=0
Wy multiply elements
8X^2-61=0
a = 8; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·8·(-61)
Δ = 1952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1952}=\sqrt{16*122}=\sqrt{16}*\sqrt{122}=4\sqrt{122}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{122}}{2*8}=\frac{0-4\sqrt{122}}{16} =-\frac{4\sqrt{122}}{16} =-\frac{\sqrt{122}}{4} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{122}}{2*8}=\frac{0+4\sqrt{122}}{16} =\frac{4\sqrt{122}}{16} =\frac{\sqrt{122}}{4} $
| 12b+-4b+-11b+-8b=-11 | | 54x=6x | | 12x-5=128 | | x2-x2=x2-x2 | | 25/100x40=x | | 10/3=-5u | | (6x^2+7)(3x^2+1)=0 | | -4/3v=-20 | | -4u^2+19u+5=0 | | 2d-d+4d=20 | | 14v-7v-6v-v+3v=18 | | 19/13-4/7x=5 | | -11v−-3v−8v+-6v+20v=-14 | | i=50 | | 11=6+y | | 15/2=-5v | | 6r-6r+2r=6 | | -6p+7=3(2p-3)-4(-10+p) | | -6/7w=42 | | 13s+4s-13s+s+4s=9 | | x+8=2(x+6) | | 6r−6r+2r=6 | | 4x+122=56 | | 13s+4s−13s+s+4s=9 | | 2v−v+5=20 | | 8u+5u-13u+4u=16 | | 52=5v-8 | | -7y=14/3 | | 7(k+9)=-63 | | 14/3=-7y | | 3v+13=43 | | X-10+13x=-7+8x+9 |